

Location	Distance (cm)	Time (seconds)	Instantaneous Speed	Average Speed (total D /total s)
Point A \rightarrow B		3 seconds		
Point B \rightarrow C		6 s		
Point C \rightarrow D		9 s		
Point D \rightarrow E		12 s		
Point E F		15 s		
Point F \rightarrow G		18 s		
Point G \rightarrow H		21 s		
Point H \rightarrow I		24 s		
Point I J J		27 s		
Point J K K		30 s		

Total Trip Values:

Total Distance =
Total Displacement = \qquad
Total Time $=$ \qquad
Average Speed = \qquad

Warm-up:

Enter this week's schedule

 into your planner.
Acceleration Investigation

Purpose:

To identify points of acceleration on a motion graph.

Skip a line here. . .

Investigation:
Acceleration is. (3 ideas from table)

Skip a line or two.
Hypothesis:
If we speed up during the path, then our data will reflect acceleration changes.

Skip a line or two.

Experimental Procedure:

1. The runner will put a marker every 3 seconds on a path until we use up the 11 markers. There will also be one at the beginning of the path.
2. During the 30 second run, the runner will walk, jog, stop and run at least once each.
3. We will measure each distance between markers.
4. We will calculate instantaneous speed and average speed.

5. We will graph the motion of the path.

Results:

Location	Distance (cm)	Time (seconds)	Instantaneous Speed	Average speed (total D /total s)
Point A \rightarrow B		3 seconds		
Point B \rightarrow C		6 s		
Point C \rightarrow D		9 s		
Point D \rightarrow E		12 s		
Point E \rightarrow F		15 s		
Point $\mathrm{F} \rightarrow \mathrm{G}$		18 s		
Point G H H		21 s		
Point H \rightarrow I		24 s		
Point I J		27 s		
Point J \rightarrow K		30 s		

Total Trip Values:
Total Distance $=$ \qquad Total Displacement $=$ \qquad
Total Time $=$ \qquad Average Speed = \qquad

3 Graphs here:

a. Draw your pathway you ran.
b.Distance (y) vs. time (x)
c.Speed (y) vs. Time (x)

Conclusion: (answer questions then complete conclusion paragraph)

1. How did you know you were changing speeds?
2. At which points were you acceleration and how do you know?
3. If a bike rider goes from home to the park, up a hill, to the store and then home, where is it accelerating 3 points minimum).

Conclusion paragraph:

